
USING THE SOLUTION TO THE REVERSE PROBLEM OF HEAT 

CONDUCTION IN THE CALCULATION OF THE HEAT TRANSFER 

COEFFICIENT FROM TEMPERATURE READINGS INSIDE THE BODY 

V.  L .  P o k h o r i l e r  UDC 536.24.01 

A method is p roposed  for  de te rmin ing  the heat  t r a n s f e r  coeff icient  f rom instantaneous t e m -  
p e r a t u r e  va lues  a t  points inside a p la te ,  a hollow cyl inder ,  o r  a hollow sphe re  during heatup. 

The coeff icient  of heat  t r a n s f e r  a t  the su r f ace  of a hollow cyl inder  or  a hollow sphe re  is defined as  
follows: 

1 - -  k Ot 
Bi  (Fo)  = - -  (1,  Fo) .  ( 1 )  

O--t(1,  Fo) 0p 

This  fo rmula  r e m a i n s  the s a m e  for  a p la te ,  with ( l - k )  r ep laced  by 1 and va r i ab l e  p r ep laced  by 
va r i ab l e  u. In o r d e r  to d e t e r m i n e  the value of the Biot  number  Bi,  t he re fo re ,  it is n e c e s s a r y  to know the 
t e m p e r a t u r e  and the t e m p e r a t u r e  gradient  a t  the heated su r f ace ,  i .e . ,  the t e m p e r a t u r e  d is t r ibut ion a c r o s s  
the wall  th ickness .  In some  p r o b l e m s  re la ted  to the de te rmina t ion  of the heat  t r a n s f e r  coeff icient ,  a t e m -  
p e r a t u r e  m e a s u r e m e n t  is technical ly  v e r y  difficult  a t  the heated  su r face  but quite feas ib le  a t  s e v e r a l  in-  
te rnal  points  a c r o s s  the th ickness .  A re la t ion  between the t e m p e r a t u r e s  a t  internal  points and the t e m p e r a -  
ture  d is t r ibut ion  a c r o s s  the wall  (including the heated surface)  can be es tabl i shed with the aid of the so lu -  
tion to the r e v e r s e  hea t  conduction p rob l em.  

By solving the r e v e r s e  hea t  conduction p rob l em accord ing  to the method in [1, 2], a one-d imens tona l  
t e m p e r a t u r e  field of bodies  with a s imple  geomet ry  can be e x p r e s s e d  in t e r m s  of the t e m p e r a t u r e s  a t  one 
or  two points and of the i r  t ime  de r iva t ives .  Using this method,  one a r r i v e s  a t  the following expres s ion  
for  the t e m p e r a t u r e  field of a p la te ,  a hollow cyl inder ,  or  a hollow sphe re  heated a t  one su r face  (u = 1, 
p = 1) and ideal ly insulated a t  the other  (u = 0, p = k): 

t(9, Fo)=  ~ t (") (k, Fo)Pn(p); t(u, Fo) = ~ t (") (u, Fo) P.  (u). (2) 
n=O r ico  

The rad ia l  po lynomia ls  Pn(p) and Pn(U) a r e  de te rmined  with the 'a id  of spec ia l  re la t ions  which the 
author  has  der ived  by methods  shown in [1] and put in a fo rm m o r e  convenient  for  engineer ing calcula t ions:  

for  a p la te  u ~ 
P,~ (u) = ; (3) 

(2n)! 
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for a hollow s phe re  

1 1 + - -  ~ ; 
P~ (o) (2n + 1)! p 

for  a hollow cyl inder  

G ( 0 ) = l ; G ( 0 ) -  4(k_1)~ -~ -21n  - 1  , 
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p~(9) 64(k--I) ~ -~--4 2-~--t-I In-~-+4 k-~--5 �9 (5) 

Expressions for higher-order radial polynomials Pn(p) for a hollow cylinder were given in [3]. 

When using expressions (2), one may consider that the values of Pn(1) decrease fast with increasing 
n. Thus, in the case of a plate Pi(1) = 1/2, P2(1) = 1/24, P3(1) = 1/720. At an insulated surface of a 
solid body heated in any practical manner, on the other hand, the successively higher-order time deriva- 
tives of the temperature become also smaller in absolute value. All this makes it feasible, for approxi- 
mate calculations of Bi(FD), to break off the infinite sum in formula (2) after a finite number of terms 
n = m; in many cases m = 2 or 3 is sufficient. 

The practical application of formula (2) is made more difficult by the necessity of calculating the time 
derivatives of the temperature at the surface t(n)(k, Fo). Indeed, if the temperature is measured within 
definite time intervals (as is usually done in practice), then determining its higher than first-order deriva- 
tives involves large errors, even whenthemost efficient methods of numerical differentiation (e.g., the 
method of least squares) are used. 

Differentiations can be avoided if, besides the temperature of the insulated surface, one measures 
also the temperatures at internal points in the wall. It follows from expression (2) that the temperature at 
an arbitrary point Pi can be expressed in terms of the following approximate relation: 

m 

t (Pi, Fo) ---- X t  (") (.k, Fo) P~ (p~). (6) 
n = 0  

F o r  a fixed number  m ,  the unknown functions tn(k, Fo) with n = 1, 2 . . . . .  m can be de te rmined  f rom 
t e m p e r a t u r e  readings  a t  points inside the body, by solving the cor responding  s y s t e m  of m a lgebra ic  equa-  
tions (6). The uniqueness of the solution follows f r o m  the l inea r  independence of functions Pn(P). 

If the number  of t e m p e r a t u r e  readings  is l e s s  than m,  then the mi s s ing  equations can  be made  up for  
with the values  of the f i r s t  t ime  de r iva t ives  of the t e m p e r a t u r e s  which have been read  t '  (Pi, Fo): 

nl--I 

t' (Or Fo) -~ X t  ('+z) (k, Fo) Pn(pi). (6a) 
n = 0  

I t  is to be  noted that a s imul taneous  use  of express ions  (6) and (6a) r equ i r e s  a ce r t a in  amount  of cau-  
tion: it  is n e c e s s a r y ,  for  ins tance ,  to f i r s t  examine the conditions under  which the s y s t e m  of equations is 
solvable .  An ana lys i s  has  shown that  in s eve ra l  ca ses  (at definite ra t ios  between coordinates  Pi of the t e m -  
p e r a t u r e  t es t  points) such a s y s t e m  may  be e i ther  inconsis tent  or  not fully de te rmina te .  Le t  us cons ider  
a p la te  whose t e m p e r a t u r e  has  been  m e a s u r e d  a t  two points with coordina tes  u i and u~ respec t ive ly .  The 
expres s ion  for the t e m p e r a t u r e  d is t r ibut ion with m = 2 contains th ree  unknowns, the de te rmina t ion  of which 
r equ i re s  that  another  equation be added to the two equations (6) se t  up for  points u I and u 2. I f  re la t ion  (6a) 
for t ' (u i) is used as  that  lhird equation, then u 2 = u~/5 the s y s t e m  will be e i ther  inconsis tent  o r  not d e t e r -  
mina te  enough (if condition t '(ul) = ( t ( th ) - t (u l ) ) /2u  ~ is sa t is f ied) .  If re la t ion  (6a) for  t '  (u2) is used as  that 
th i rd  equation, however ,  then the s y s t e m  will have  a unique solution for any ra t io  between u i and u~ except  
file t r iv ia l  u i :u 2 = 1. Thus ,  a p r e l i m i n a r y  solvabi l i ty  analys is  al lows us to choose f rom Eqs.  (6a) those 
which together  with Eqs .  (6) will f o rm a cons is ten t  and fully de te rmina te  sy s t em.  

T h e r e  is a lso  another  approach  to solving the p rob l em,  which c i r cumven t s  the need for a p r e l i m i n a r y  
solvabi l i ty  ana lys i s .  F r o m  expres s ions  (6) and (6a) one can  obtain m o r e  equations than requ i red  for  de -  
t e rmin ing  all  unknowns. With al l  these  equations,  the s y s t e m  is ove rde t e rmina t e  and v e r y  often incons i s -  
tent.  In the solution of engineer ing p rob l ems  on the bas i s  of t e s t  data,  we a r e  genera l ly  in te res ted  not in 
an exact  answer  but in the bes t  answer  poss ib le  under given conditions. In this ea se  it  is mos t  convenient  
to solve the given s y s t e m  of equations by the method of l e a s t  squa re s ,  which will c l ea r  any o v e r d e t e r m i n a c y  
o r  inconsis tency.  P r o p e r  suggest ions can  be found in [5], for  example .  

I f  the body wall  is heated on both s ides ,  then the min imum number  of t e m p e r a t u r e  readings  is 2 and, 
instead of express ion  (2), we have  the following re la t ion  which defines the t e m p e r a t u r e  field in t e r m s  of 
m e a s u r e d  t e m p e r a t u r e s  tl(Fo) and t2(Fo) with their  de r iva t ives  [2]: 

t(o, eo) = %" t~ "~ (vo) P,,~ (p) + ~ t(~ "~ (vo) p , .  (~). (7) 
n=0 n=0 

The expressions for the radial polynomials Pin(P) and P2n(p) for this case were given in [2]. 
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TABLE 1. Calculation of the Heat T rans fe r  Coefficients 

Fo BI/ l - -k  ~ 1,0 Bi / l - -k  = 5.0 

0.0313 
0,0782 
0,1565 
0,313 
0,782 
1.565 

1,049 
1,219 
1,113 
1,019. 
1,029 
0,973. 

4,119 
4,947* 
5,413 
4,559 
4.814 
4,926* 

Note. The Bi *values were calculated l~rom the temperature at points 
p = 0. 9, O. 6, 0. 2, the other values were calculated from the tempera- 
tures at points p = 0. 9, 0. 8, 0. 2. 

An analogous procedure  can be used for express ing the derivat ives tn(Fo) in formula (7) in t e rms  of 
tempera ture  readings at  internal points Pi. These  points Pi must  lie between the hot surface  and the neares t  
point at  which t empera tu re  t l or  t 2 is measured .  When two sur faces  of a body a re  heated, then, of course ,  
the number of internal t empera tu re  readings neces sa ry  for calculating tln(Fo) and t~(Fo) is double the num-  
ber  needed in the previous  case  of one heated surface .  

System (7), just as sys tem (6), has a s imple solution: this follows from the l inear  independence of 

all functions Pin(P) and P2n(P). 

In o rde r  to reduce the number of measurements  at  internal points, one may use, in addition to t em-  
pe ra tu re s ,  also their  f i r s t  der ivat ives  at  given points. In that case  the sys tem of equations must  be f i rs t  
tested for consis tency or  it must  be solved by the method of leas t  squares .  

Thus,  we can find relat ions which will yield the tempera ture  at any point ac ros s  the wall of a body 
- including the heated surface .  Express ions  8 t / S p  a r e  analogous to (2) or  (7), with Pn(P) replaced by 

(dPn/d0)(P) �9 

The Blot number was calculated for a hollow cylinder with the inside surface  insulated, as shown in 
Table 1, f i r s t  f rom the t empera tu re  readings at  two internal points and at the insulated surface  (k = 0.2), 
then according  to the exact solution [4] with 0 = 1 and a zero initial t empera ture  field. The accuracy  of 
the resul ts  is adequate for use in engineering designs.  

0 
X, r 
L 

R 

p = r/Rh; 

k = ai/Rh; 
u = x / L ;  

T 

F o  = a r  / L  2 

F o  = a t / ( t l o u t - R i ~  ~ 

B i  = a L / ~  

tn(Fo) 

N O T A T I O N  

is the ambient  t empera ture ;  
a r e  the space coordinates ;  
is the thickness of a plate;  
is the radius of a sur face ;  

is the thermal  diffusivity; 
is the thermal  conductivity; 
is the heat t r ans fe r  coefficient; 
is the t ime;  
is the Four i e r  number ;  
is the Four ie r  number ;  
is the Blot number ;  
is the Biot number ;  
is the n- th  o rder  derivat ive of tempera ture  with r e spec t  to Fo. 

S u b s c r i p t s  

out denotes the outside surface;  
in denotes the inside surface;  
i denotes the insulated surface;  
h denotes the heated sur face .  
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